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Abstract: Since phosphorus (P) is an essential element for life, its usage and application across
agricultural production systems requires great attention. Monogastric species such as pigs and
poultry can significantly contribute to global food security but these animals remain highly dependent
on the supply of mineral inorganic P in their feeds. Pig and poultry, which represent 70% of
the global meat production, are also major P excretors and thus represent important sources of
environmental P inputs. Balancing the P cycle within farming systems is crucial to achieve P
sustainable and resilient livestock production. Therefore, the interconnection of animal feed, livestock
farming, manure, and soil/aquatic ecosystems requires multidisciplinary approaches to improve
P management. With regard to a sustainable agricultural P cycle, this study addresses aspects of
feeding strategies and animal physiology (e.g., phase feeding, P conditioning, liquid feeding, phytase
supplementation, genetics), soil agroecosystems (e.g., P cycling, P losses, P gains), reuse and recycling
(e.g., manure, slaughter waste), measures of farmers’ economic performance (e.g., bio-economic
models), and P governance/policy instruments (e.g., P quota, P tax). To reconcile the economic
and ecological sustainability of animal husbandry, the strategic objective of future research will be
to provide solutions for a sufficient supply of high-quality animal products from resource-efficient
and economically competitive agro-systems which are valued by society and preserve soil and
aquatic ecosystems.

Keywords: agricultural cycle; bio-economic assessment; environmental phosphorus burden;
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1. Introduction

Phosphorus (P) availability is very important for the functioning of natural and human-managed
agricultural ecosystems where P is cycled among plants, animals and soils [1,2]. In intensive
agricultural production systems increased P availability can, however, lead to serious environmental
problems, and improvements in P efficiency use are urgently required through the implementation of
new sustainable management strategies [3–5].

Since the 1940s, the fossil mineral sources of phosphate rock have been intensively exploited to
cover the food demand of an exponentially growing global population. At present about 240 megatons
of high quality and accessible phosphate rock (ore) are mined per year and this is yearly increasing at
a rate of 2% [6]. The geopolitics of P are only now being analyzed and the risks regarding potential
shortages are high [7,8]. Global P demand will continue to rise over the remainder of the twenty-first
century due to the growing world population with increased demand for meat and dairy products,
but also biofuels and mineral fertilizers. The accompanying massive fluctuations on the P rock
market—e.g., with over 8-fold price increases in 2007/2008 [9]—considerably weaken the independence
and competitiveness of the agricultural production chain. The looming gap between demand and
supply, if unchecked, will jeopardize food production and hence food security.

Currently, about 17 megatons of P are extracted annually, of which about 15 megatons are used
in fertilizers. Of these, only 20% or about three megatons reach humans in the form of food [10–12].
There are major losses to soil and erosion through inefficient agro-practice and very little of the
three megatons are recycled from our waste systems [13]. These inefficiencies can be partly attributed
to the fact that age-related P requirements are in some cases considerably exceeded. Indeed, the
required P supply decreases significantly with increasing live weight and matured skeletal system.
Thus, over-supplementation practices lead to unnecessarily high P excretion rates [14]. Manure in
intensive livestock farming contains a high P load [15] while causing serious concerns for both soil
and aquatic ecosystems [16]. Many soils exposed to intensive livestock production in Europe exhibit
excessive P amounts which negate achievement to match the objectives stated by the European
Union’s (EU) Water Framework Directive (2000/60/EC) and Urban Wastewater Treatment Directive
(91/271/EEC). Thus, if efficiency and reuse potentials within the agricultural cycle were improved,
sensitivity to P scarcity, mineral P price fluctuations, and P environmental load could be reduced [17].
The aim of this study is to summarize the main factors and characteristics that contribute to improving
the sustainable use of P in agriculture in an interdisciplinary manner.

2. Approaches to Achieving P Sustainability from an Animal Husbandry Perspective

Within the global P cycle, P is transferred both directly through P-containing rock reserves and
indirectly through animal feed with its vegetable P components [10]. However, the P consumed by
farm animals is to a certain extent excreted via manure and usually applied regionally on arable
land and grassland. It is clear that the potential uses of P compete between agricultural systems
to ensure food security for a growing world population [18]. For animal husbandry, this demands
solutions to balance the P cycle in the monogastric pig and poultry farming (which represents about
70% of the global meat production [19]), hence contributing to a P-resilient livestock production that is
resource-efficient and economically competitive.

Multidisciplinary experimental approaches are strongly required to trace the fate of P within the
agricultural cycle of fodder plants, animals, microbiota, manure, and soil. In fact, P has a significant
environmental impact if used inefficiently in animal husbandry (Figure 1). Possible approaches must
be identified that reduce the dependency between population size of farm animals per area and
environmental P load (Figure 1, solid line). Ideally, a population of farm animals can be supplied
without harming its ecosystems, i.e., agro-ecological and non agro-ecological systems (Figure 1, dashed
line). Moreover, combined and multidisciplinary efforts might lead to a scenario likely representing
a shift towards a sustainable intensification (Figure 1, dotted line). In this context, there are several
conceivable options to be discussed and experimentally validated (Figure 2).
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Figure 1. Scenarios illustrating the relationship between population size of farm animals per area and
environmental P load. The solid line indicates P surplus areas due to P over-application. The dashed
line indicates that a population of farm animals can be supplied without harming its ecosystem.
The dotted line will lead to a reduction in the environmental impact of farm animal husbandry due to
the combined approaches and knowledge derived from animal physiology, ecology, economy, recycling
technics, policy, and governance.
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Figure 2. Approaches to achieving P sustainability from an animal husbandry perspective.

2.1. Animal Nutrition

To increase P efficiency in monogastric animals such as pigs and poultry, the genetic and
physiological basis of P metabolism must be better understood at the molecular, cellular, organismal
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and microbiological levels. In intra- and intercellular body fluids, P is usually present as phosphate
anions (PO 3 –

4 , HPO 2 –
4 , H2PO –

4 ), which carry out the various biological functions of P. Indeed,
P is of crucial importance for many aspects of animal and human metabolism, as it is involved in
the formation of bone minerals, nucleic acids, and energy equivalents (Figure 3). Due to growth,
metabolism, and physiological turn-over, the organism exchanges and subsequently also excretes P
of endogenous origin which has to be steadily replaced by adequate diets [20]. In animal husbandry
different dietary regimen and nutrients are discussed and evaluated with regards to P requirement
and feed/P efficiency, respectively.
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Figure 3. Animal-centered model of the agricultural P cycle. As P is important for all living organisms
including monogastric species, dietary P requirements have to match utilization processes and P
excretion rates due to physiological turn-over and endogenous losses (orange). Minimizing the mineral
P supplementation and improving the P efficiency of animals depend on various factors such as
(epi)genetics, husbandry, P digestibility, hormonal status, and transcription rates (blue).

2.1.1. Feeding Regimen

Nutrition has a great impact on P efficiency. Feeding recommendations probably need to
be more intensively diversified according to the species-specific physiological conditions during
rearing, fattening and reproduction stages (embryonal/fetal skeleton formation). The P homeostasis,
i.e., maintaining a state of P equilibrium through endogenous regulatory processes, is primarily
maintained by the intimate interplay between vitamin D (calcitriol), parathyroid hormone (PTH),
calcitonin (CT) and fibroblast growth factor 23 (FGF23). These factors orchestrate the animal-intrinsic
responses to balance absorption (gastrointestinal tract), storage (skeleton), and excretion rates (kidneys).
Moreover, the P homeostasis also depends on several sometimes contradictory factors such as
regulators, transporters, and endocrine and paracrine signals whose endocrine function and integration
into networks have not yet been clearly identified [20–26]. Consequently, the mechanisms that mediate
P homeostasis contribute to a significant phenotypical variation [27,28]. Accordingly, one important
step to improve P efficiency and reduce P excretion is a finely graduated phase feeding or precision
feeding regimen which is already used to a certain extent to adapt growth performance to ontogenetic
requirements. Based on the number of feeding phases such strategies were shown to reduce P excretion
by up to 38% [29] and increase the P efficiency to almost 50% in growing-finishing pigs by the strategic
use of e.g., phytase [30].

Beside nutritional strategies focusing on postnatal periods [31,32], also prenatal development
has proven to be sensitive to a variety of environmental and maternal factors [33–35]. Its adaptive
response has been termed ‘Metabolic Programming’. This phenomenon is characterized by long-term
consequences for growth, function and structure of various tissues and therefore has implications
on health and welfare of animals and humans [36,37]. The mechanism by which environmental
and maternal cues are transmitted may involve the epigenetic regulation of specific genes [38,39].
This may offer the possibility to induce different and stable phenotypes as findings in animal models
revealed adaptive responses which facilitate considerable organismal plasticity [35,40,41]. In fact,
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due to selective dietary P challenges, the adaptive responses are thought to be associated with
endocrine, paracrine and autocrine regulation of P homeostasis. Consequently, a P conditioning
throughout embryonal/fetal development might be effective in order to improve P efficiency in
a cross-generational manner.

The apparent total tract digestibility of P in phytate rich cereals is low in monogastric animal
species due to a short retention time of digesta in the stomach and anterior part of the small intestine
where the P absorption takes place. In particular the jejunum is the main site of P absorption [42].
In this context, it is known that liquid feeding of pigs prolongs the time for enzymatic activity.
This pre-digestion allows more phosphate groups to be released for absorption, which increases the
total tract digestibility of P compared to dry feeding systems. However, several optimization steps of
the liquid feeding conditions such as the duration of soaking, the pH value and temperature of diets,
and the addition of enzymes are currently under evaluation in order to increase P utilization (e.g., [43]).
In addition, indirect effects on P digestibility due to changes in the microbiota composition are
increasingly being investigated. Indeed, possible interactions between microbiota and host, as already
described for characteristics of feed efficiency, may be significant [44,45]. In this context, a potential
impact mediated by the availability of mineral P, inositol phosphates, and myo-inositol in feedstuff
and digesta need to be considered [46].

Several studies focused on the question of optimal P supply using various phytases (e.g., [47–49]).
Thereby, the anti-nutritive effect of phytate is minimized by enzymatic hydrolysis in the upper part of
the digestive tract. In fact, as the phytate-bound P is only available to a limited extent for monogastric
animals, microbial phytases are routinely used in the nutrition of pigs and poultry. Despite extensive
trials in phytate/phytase research in the feeding of broilers and pigs, there is probably further potential
to improve P efficiency through the evaluation of different phytase types, phytase dosages, phytase
activity sites, dietary phytate contents, and feed ingredient composition. Because such treatments
impact on P digestibility and P excretion rate, health and welfare measures need to be well documented.
The introduction of transgenic pigs expressing bacterial phytase in the salivary gland to reduce fecal
P losses has not yet proved marketable [50]. Therefore, alternative approaches must be identified
to clarify whether endogenous phytases even exist and whether P absorption in distal intestinal
tracts of chickens and pigs are of relevance [51]. In addition, other feeding strategies include (i) the
use of regional cereals with different phytate profiles and (ii) usage of ingredients lowering the
gastro-intestinal retention time for sufficient breakdown of phytate to improve intestinal P absorption.

Few studies with holistic approaches have focused on molecular metabolic pathways that are
relevant for reduced and excessive P supply in farm animals [28,52]. Experiments elucidating
the genotype-phenotype map will likely prove beneficial for the characterization of the molecular
mechanisms of P efficiency. Hence, a more comprehensive understanding of P influxes and effluxes is
required to derive physiological and (epi)genetic P efficiency potentials. In addition, systems biology
analyses complement a holistic view of relevant metabolic pathways, which can be validated with
mathematical and statistical approaches [53].

2.1.2. Animal Welfare Aspects

Welfare and health status are closely related to bone integrity and mineral metabolism but
the skeleton also serves as a reservoir for minerals required for the various biological functions
(Figure 3). Therefore, deviations from the currently recommended dietary P supply must be carefully
considered. Indeed, dietary challenges associated with variable amounts of P have had an impact on
bone mineralization and bone microstructure [54,55] and revealed implications on energy metabolism
and nutrient utilization [56]. In this context, P serum levels are a primary signal for activating endocrine
responses, as thereby several known and yet to be elucidated regulators are addressed. Accordingly,
as endogenous mechanisms affect important adaptive immune responses, research on P homeostasis
requires considerable attention due to its importance in health and disease [57]. In pigs, interactions
between the dietary P supply and the immune system can be deduced [28,58]. Hence, nutrition links
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the skeletal system with the immune system to a transdisciplinary field known as osteoimmunology
[59,60]. It expands the insight into the repertoire of genes involved in P homeostasis and the molecular
processes in the bone marrow niches which are a specialized microenvironment that modulate mineral
homeostasis, bone formation, hematopoiesis, and immune functions according to the requirements
of the organism and external stimuli. The structural and metabolic responses following divergent
P supplies suggest that further research is needed to comprehensively map and identify P-relevant
molecular pathways to characterize an efficient mineral balance. In addition, consequences for bone
health, biomechanics, bone microstructure, and mineral composition (i.e., of femora, metacarpal bones)
will have to be captured to assess P efficiency in monogastrics and to further approximate dietary
effects on animal health and welfare.

2.1.3. Animal Genetics

It has been shown that P homeostasis and therefore, individual P requirements are partially
based on genetics (species, breed). Monogastric animal species appeared to have DNA variations
contributing to the phenotypic variability of certain P characteristics such as P utilization [27,61–63] and
bone mineralization [64,65]. In chicken and quail populations, estimations have shown a considerable
heritability of approximately 10% [62,63,66]. However, holistic and genome-wide association studies
(GWAS) for P-relevant traits are still missing for pig [67,68]. It can be assumed that the heritabilities
are similar to quails and chicken, allowing the underlying genetic variation to be elucidated and
subsequently used in breeding programs. Consequently, the genetic foundation of P efficiency provides
opportunities to improve endogenous mechanisms of P utilization and to select P efficient animals.

2.2. Phosphorus Reuse and Recycling

Approximately 23.4 million tonnes of pork and about 13 million tonnes of poultry meat products
are produced in the EU annually [69,70]. Along with these products, about 177 and 113 million
tonnes of manure are generated respectively from pig and poultry farms annually which makes about
one-fifth of all animal manure generated in the EU [71]. Recycling and reuse of P from manure can
reduce the dependence on mineral fertilizers and also contribute to a reduction of P loads to fresh and
marine water ecosystems. For the Baltic Sea for example, allowable levels of P and N inputs from each
country and targets for reduction by 2016 have been agreed to [72]. However, studies have shown that
previous reductions in P loads to coastal waters, in the case of Denmark for example, have been due to
improved sewage treatment and lower point source emissions whereby no reductions in P loads from
diffuse sources have been detected [73]. This underscores the need for stronger efforts to increase P
reuse and efficiency in agriculture.

The average dressing percentages for pigs and poultry range between 70% to 80% [74–76],
reflecting the huge amounts of waste generated in slaughterhouse meat processing throughout the
EU. Slaughter waste can be used to produce pet food and fertilizer, but in many cases it is incinerated
or used to make porcelain [11]. The P, which is currently incinerated or used for porcelain, must be
recovered and used for agricultural purposes to enable a more resilient P cycle.

In the EU, manure from pig and poultry farms is often used directly by spreading on agricultural
land or as manure compost, separated solids from raw manure or digestate and as dried manure
and pellets. While the huge amounts of P from pig and poultry manure have potential to contribute
towards reducing the P mineral imports into the EU, the Nitrates Directive (91/676/EEC) limits
nitrogen applications from manure origins to a maximum of 170 kg/ha/year. This creates regions with
excess manure and which are also constrained in transporting it to nutrient-deficient regions due to
high transport costs, even though redistribution of manure has been shown to be effective in meeting
targets for reduction of nutrient inputs to marine waters [77].

Over the years, several technologies have been developed for treating and processing manure
even to the standard of generating by-products of such quality that they can be used in manufacturing
chemical fertilizers [78,79]. Such technologies, some of which have been implemented at commercial
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scale could mitigate the reuse limitations of the Nitrates Directive by generating chemical fertilizer
products from excess manure. However, these products would still be regarded as ‘manure’ since the
EU’s Fertilizers Regulations (2003/2003/EU) does not specify an animal by-product end point and
consequently would be subjected to the same limits for animal manure as per the Nitrates Directive.
Presently, only about 7.8% of all manure generated in the EU is processed [71] and there is limited
knowledge of the full potential for P recycling from the several novel technologies that have emerged
in recent years. Building on previous research, it will be important to quantify the potential of P
reuse and recycling from pig and poultry farming both on regional and national scales and to identify
policy measures that can enable increased manure processing to generate reuse products, increased
redistribution of manure between P surplus and P deficient areas and hence a more efficient and
resilient P cycle in agriculture. It is also crucial to assess the impact of policies and regulations like the
directive on promoting the use of renewable energy (for EU e.g., Directive 2009/28/EC) in creating
incentives for the recovery of other resources and materials like biogas, clean water, and protein feed
which have additional co-benefits.

2.3. Phosphorus Impact on Soil Agroecosystems

Agricultural grassland and farmed land represent important livestock-support systems, which
are associated with large pools of P in both plant and soil compartments. The storage and temporal
availability (and loss) of P from these soil pools can be greatly affected by the quality and quantity
of animal slurries and manures returned to soils under intensive farm management. It is not
clear how these organic nutrient amendments might actually influence the ability of grassland
ecosystems to retain, use and cycle extra P loads between aboveground (i.e., plant biomass) and
belowground compartments (i.e., plant roots and soils), especially in the long-term. Findings from
a recent meta-analysis study show how P additions to soils contributed to increase total soil P pools,
soil P availability and soil microbial P biomass [80]. Because nutrient fertilization can have long-term
effects on soil P availability especially in surface horizons [81], it is likely that large P additions to
soils will lead to nutrient leaching to water ecosystems. Changes in soil biogeochemical properties
and/or changes in agricultural practices can alter P storage and availability in soils. For example,
decreases in soil pH can increase phosphate availability because cations will be exchanged on clay
particles and other surfaces [82]. Variation in soil P availability will influence P uptake rates in plants
and the amount of P that could be lost through leaching, which can lead to serious eutrophication
problems to freshwater systems [83]. There is also evidence of negative P-induced fertilization effects
on plant species diversity and in general on biodiversity levels, which in grassland ecosystems tend
to remain constantly low above thresholds in soil P of 104–130 mg P/kg [84]. Chronic P additions
can greatly affect plant-microbial symbioses including the abundance of arbuscular mycorrhizal fungi
(AMF) and their role in uptaking P from soils [85]. More research is also needed to evaluate the role
of plant roots in the uptake of extra P added to soils and to address whether changes in root length
and/or root biomass could affect soil P availability and P leaching from grassland soils, which are
chronically amended with animal manures.

Another important aspect is that nutrient additions to soils from animal wastes will include not
only P but also other key nutrients such as nitrogen, which combined effects on ecosystem nutrient
cycling are not clear yet. A recent meta-analysis study shows, however, that the combined addition of
nitrogen and P to soils further contributes to increase plant P pools and also soil total P, soil available P
and soil microbial biomass P [80]. Interestingly, the same study shows no relationship between these
terrestrial P pools and the N:P ratio of added fertilizer (mainly inorganic fertilizer) suggesting that the
relative abundance of N and P in fertilizers may not influence the net combined effects of N and P
addition on plant and soil P pools. This finding (if confirmed) could have far reaching implications
for ecosystem P cycling in ‘real-world’ farming systems and more research is needed to understand
how nitrogen and P additions will affect P gains and losses in soils amended with animal manures.
Interestingly, the new Danish fertilizer legislation applicable from 2017 builds on an appropriate N:P
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ratio in fertilizer planning at local/regional level aiming to support the development of a concurrent
balanced N and P strategy.

P cycling between aboveground and belowground compartments will depend on the interactive
effects of the quality and quantity of P inputs to soils and P transformations, availability, and utilization
within the soil-rhizosphere-plant system [85]. As discussed above, new nutrient management solutions
at the farm scale could include more efficient animal feeding strategies which limit P inputs to soils
but also the promotion of higher diversification of agroecosystems, which could reduce P losses while
optimizing both plant yields and ecosystem services [86]. The advantages of agricultural ecosystem
diversification are likely greatest where farming inputs negatively affect environmental conditions
and reduce the nutrient use efficiency of main crop species (Figure 1). Improvements in feeding with
regard to a more balanced P supply in animals according to their need and high P digestibility may
lead to reduced inputs to soils, which then promote a more efficient use of P by plant crop species
which biomass could in return be fed to the animals.

2.4. Policy and Governance

Beyond technical and nutritive improvements to increase the efficiency in the use of P, policy
measures aim to regulate the use of P at the farm level and represent instruments worthy to be
analyzed [87]. These tools are being debated with regard to future agri-environmental policies and
have already been implemented in some countries. In accordance with the existing provisions on
nitrogen use, a typical policy tool may consist in the introduction of a P quota from manure and slurry
to be spread on farmland. In fact, a P quota system is already in place in the Netherlands. The Dutch
experience shows that complying with a P quota system is tough and an integration of several P
management practices is required. In the Netherlands, the compound feed sector has recently started
to reduce the amount of P in dairy feed, a practice which has been applied in diet considerations in US
dairy farming during the last decades [88]. Efforts are also being made to apply this practice to pig
nutrition. In Denmark, a tax on the use of supplemental inorganic mineral feed phosphate has been in
force for more than 10 years in order to stimulate farmers to use plant P more efficiently in livestock
production resulting in a reduced use of feed phosphates. In addition, the introduction of a tax on P
inorganic fertilizers in order to discourage its non-efficient use might count as a market-based policy
tool to improve the agricultural P cycle. However, their economic and environmental impact if applied
to farms, regions, and countries with possibly divergent animal populations remains to be analyzed.
It is also important to make an assessment of how proposed technical measures e.g., on feeding regimes,
genetics, P reuse and recycling, and on-farm P efficiency, will contribute to meeting nutrient and natural
resource-related targets in existing policies and regulations. These include the Nitrates Directive
(91/676/EEC), the Industrial Pollution Prevention and Control Directive (2008/1/EC), the National
Emission Ceilings Directive (2001/81/EC), the directive on promoting the use of renewable energy
(Directive 2009/28/EC), the proposed EU Circular Economy package and other regional and national
policies reviewed by Schröder et al. [11]. In addition, relevant national governance arrangements have
to be reviewed to deduce recommendations to further develop sustainable P use.

2.5. Farm Economics

Bio-economic farm models are models which integrate farm level input-output relationships with
economic data. Such models allow to assess technological innovations and policy changes [89,90].
However, there is a lack of current data on various P management strategies to assess the ecological
and economic performance of farms [91]. Therefore, multidisciplinary research approaches focusing
on animal biology, social ecology and economics are of decisive importance for monitoring the fate
of P. Indeed, the results obtained from analyses described in Sections 2.1–2.4 need to be embedded
in bio-economic models to assess their impact on the economic and environmental performance of
farms. In addition to novel feeding strategies and technical innovations (Figure 2), the typology
of pig and poultry farms will play an important role in bio-economic farm models. Specifically,
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the implementation of variables applicable to average representative farms could include farm size,
farm location and intensification of the production process. Subsequent upscaling to regional and
national levels could show the overall impact of any simulated strategy in terms of effectiveness in
reducing environmental P load.

3. Conclusions

This paper has shown that significant improvements in the sustainability and resilience of the
agricultural P-cycle can only be achieved through interdisciplinary research approaches. The different
aspects of animal, soil and plant sciences, economics, technology and politics as well as governance
must be linked in order to make use of their mutual relations (Figure 4). To improve P use/reuse
efficiencies along the entire value chain, agricultural research activities should focus on nutritional
strategies and the biodiversity of monogastric P utilization. Considering cost-benefit assessments
in various farm-, production-, and process-systems, defined approaches of how to improve soil
management and manure practices will contribute to balancing economic and environmental
sustainability with potential impacts on research and policy communities. Indeed this emphasis
on pigs and poultry, which account for 70% of the global meat production, is a significant contribution
to ensuring sustainable management of the world’s limited P sources.

Farm animal
requirements

Impact on
ecosystems

Governance
arrangements

Economic
performances

Figure 4. Dependencies from economy, animal husbandry, environment, and P governance. Animals
are kept for reasons of food security and economic interest. Due to the species, animal excrements
contribute to fertilize arable land which may result regionally in high environmental P load.
The condition of the environment generates political action, which in turn regulates economic
possibilities. Hence, multidisciplinary experimental approaches should cover all related subjects.
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